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Abstract
An alternative interpretation to Gibbs’ concept of the canonical distribution
for an ensemble of systems in statistical equilibrium is proposed. Whereas
Gibbs’ theory is based upon a consideration of systems subject to dynamical
law, the present analysis relies neither on the classical equations of motion nor
makes use of any a priori probability of a complexion; rather, it makes avail
of the basic algebra of random variables and, specifically, invokes the law of
large numbers. Thereby, a canonical distribution is derived which describes a
macrosystem in probabilistic, rather than deterministic, terms, and facilitates
the understanding of energy fluctuations which occur in macrosystems at an
overall constant ensemble temperature. A discussion is given of a modified
form of the Gibbs canonical distribution which takes full account of the effects
of random energy fluctuations. It is demonstrated that the results from this
modified analysis are entirely consonant with those derived from the random-
variable approach.

PACS numbers: 0520, 0250, 0530, 0570

1. Introduction

A tantalizing feature of statistical mechanics and thermal dynamics that has come to the fore in
the course of the past decades is the recognition that the basic tenets of statistical mechanics—
namely, the microcanonical and canonical ensembles—do not readily lend themselves to
rigorous, definitive proof by the equations of motion inherent in classical or quantum physics.
A thorough discussion of the underlying problems has been given in numerous comprehensive
texts, such as those by Jancel [1] and Balescu [2].

The object of the present study is to demonstrate that the development of the concept of the
canonical distribution can be achieved through the use of basic principles of random-variable
algebra, in contrast to the deterministic character of classical or quantum mechanics.

Traditionally, the theory of ensembles considered by Gibbs deals with systems consonant
with dynamical law, which follow Liouville’s law. This approach, under certain conditions,
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also implies a condition of statistical equilibrium, devoid of fluctuations. Any difficulties
of this kind can, as shown below, be removed by the use of random-variable theory. The
canonical distribution thereby no longer constitutes a law of distribution in phase space but
one which, instead, applies to an individual system in statistical equilibrium, possessing a high
state probability.

2. The basic ensemble

The conventional canonical ensemble can be considered to be a collection of microcanonical
ensembles [3], that are independent but subject to small variations in temperature associated
with any changes in mutually neighbouring conditions of equilibrium. This condition is
required in the conventional ensemble in order to take account of energy fluctuations that
occur in the corresponding macrosystems. For these underlying aspects, the reader is referred
to the text by Klimontovich [4], who provides a thoroughgoing consideration of fluctuations
and of the dynamical evolution of systems, while that by Balian [5] deals with the distinction
between microsystems and macrosystems in this context. By way of contrast with the
conventional canonical ensemble made up of microsystems, the present canonical ensemble
considered below is deemed to consist of a collection of independent macrosystems, each
such macrosystem interacting with a heat reservoir maintained at a common temperature, but
each system possessing a random total energy. Acting non-collectively, the systems are taken
to be identical in all respects. In the first instance, it is assumed that the random variables
characterizing each system are all subject to the same distribution although, as will be shown
later, this condition can, in fact, be relaxed, giving rise to different possible distributions.

The present study concerns itself with macrosystems in statistical equilibrium, all in mutual
contact and all at the same constant temperature. This is at the very heart of the new approach.
The condition for the existence of statistical equilibrium requires the mean energies of the
individual members of the ensemble to be equal and each to be a constant of the motion.

3. The law of large numbers

Each system in the ensemble is in statistical equilibrium at a fixed definite temperature. The
application of the law of large numbers makes it possible to define an overall fixed, definite,
average system energy. In the present environment, this can be accomplished by designating
the mean of the system energy distribution, 〈E〉, as this average energy. It should be emphasized
that the actual energy distribution, although identical for all systems, has yet to be identified.
In this respect, an important theorem, known as the law of large numbers [6], relates 〈E〉 to
the random variables E1, . . . , Er, . . . . This law is pivotal to the development of the random-
variable canonical distribution. It states that the distribution of the sum of a large number of
random variables X will asymptotically approach a normal distribution. Consequently, it can
be shown that the arithmetic mean of a large number of measurements of the values of a random
variable will with utmost probability approach the mean of the random variable, namely

N∑
r=1

Er/N → 〈E〉 as N → ∞

or
N∑
r=1

Er/N = 〈E〉 + ε(N) wherein ε(N)→ 0 as N → ∞.
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4. The random-variable canonical distribution

It bears emphasizing that, in contrast to the Gibbs-ensemble treatment in which a number
of non-interacting microcanonical systems, each obeying the classical laws of dynamics, are
considered to establish the behaviour of the macro-ensemble, the present approach avoids
the inherent constraints of classic dynamics and ergodic theory by employing a treatment
that applies the law of large numbers to a set of identical independent macrosystems, each
interacting with a heat source and each possessing random total energy at any one time.
Thereby, the ergodic principle or related principles are no longer featured in establishing the
distribution. The law of large numbers is valid for any distribution of the variablesEr provided
that the distribution is identically the same for all systems of the ensemble. However, even this
condition can be relaxed; a short discussion of this aspect will be presented later in the text.

The present objective is to determine the most probable distribution P of the ensemble,
subject to the constraints of the law of large numbers and of the fixed number of systems
comprising the ensemble.

The probability for any member of the overall macrosystem to be in a given (random) state r
will be designated by a random variable as pr . Such random probabilities p1, p2, . . . , pr , . . . ,

etc are, accordingly, unrelated to any prior probabilities for the components of the system or
of the system as a whole, therein bypassing the whole question of a priori probability. If
we suppose there to be n1 such identical systems with probability p1 and energy E1, and n2

identical systems with probability p2 and energy E2, etc, and a total number of N systems
making up the ensemble (bearing in mind that the members of the ensemble are all independent
of one another) we find the net state probability to be

P =
N∏
r=1

pnrr (1)

or

lnP =
N∑
r=1

nr lnpr. (2)

The condition for the law of large numbers is given by the following two expressions:
N∑
r=1

nrEr = N〈E〉 ±Nε(N) (3)

and
N∑
r=1

nr = N. (4)

From equations (3) and (4) it follows that
N∑
r=1

nr [Er ± ε(N)] = N〈E〉. (5)

Any deviations from the uniform energy distribution would be inconsistent with the original
premise that the systems are identical in all respects. It should further be noted that the
consistency requirement also mandates that out of all the possible choices of systems, only
the most probable configuration can be the sole option, consonant with equation (6) below.
Accordingly, the most probable condition for lnP consistent with conditions (3) and (4)
is determined in the conventional variational manner by using the method of undetermined
multipliers. The variational principle, as used in the present context, thus has two salient
functions, namely
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(a) it enables one to predict the most likely situation prevailing for the total ensemble; and
(b) it substantiates the basic assumption that the random-variable distributions are indeed the

same for all systems, i.e. the macrosystems are just identical copies of one another.

In this, it can be contrasted with the Gibbs approach, in which a collection of
microcanonical systems made up of indistinguishable particles in an incompressible mélange
comprise the overall system. One can therefore argue that in the current treatment one must
use the variational principle in order to avoid inconsistency within this approach and vindicate
the validity of the development. The method of undetermined multipliers gives, accordingly,

N∑
r=1

δnr lnpr = 0 (6)

namely

N∑
r=1

δnr [Er ± ε(N)] = 0 (7)

wherein

N∑
r=1

δnr = 0. (8)

Consequently,

lnpr + λ + µ[Er ± ε(N)] = 0 (9)

where λ and µ are the undetermined multipliers. Hence as N → ∞,

lnpr + λ + µ[Er ] = 0 (10)

or, in conventional form,

pr = exp[−λ− µEr ]. (11)

It bears emphasizing at this juncture thatEr will not in general be a time-independent function.
Each value ofEr is a random quantity and, as will be discussed in the next section, each member
of the ensemble will be subject to random energy variation, as a result of energy exchange
with the heat reservoir.

As already mentioned, the law of large numbers may also be valid under less stringent
conditions than those stipulated above. Specifically, the sum of a large number of random
variables may also obey normal conditions forN → ∞ even if the variables are subject to other
than normal distributions [7]. The necessary condition for this to occur can (approximately)
be expressed as follows:

lim
N→∞

σj/sn = 0 for all j

where σ 2
j is the variance of the j th term, and s2

n = ∑N
j=1 σ

2
n . However, since it has

been demonstrated that the condition for a maximum value of P requires a uniform energy
distribution for the ensemble members, any such less stringent condition is unlikely to be
advantageous in practice.
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5. The Liouville equation and the random-variable canonical ensemble

At first sight, there would seem to be a marked similarity between Gibbs’ formulation of the
canonical distribution and the random-variable distribution. However, this, in fact, is not the
case. The variable distribution has, built into the system (wherein, henceforth, each member of
the ensemble will be designated as a ‘system’), the contribution of random energy fluctuations
resulting from the interaction between each system and the heat reservoir. On the other hand,
the Gibbs formulation does not a priori include the effect of such an interaction. However, in
a recent analysis [8] involving a modification of the standard Liouville equation, it was shown
that it was possible to include the effects of random energy fluctuations within a comprehensive
Gibbs-type formalism.

The relevant time-dependent Liouville equation giving the partial time derivative of the
probability density ρs (per unit volume) for a system s in statistical equilibrium herein takes
the form

−∂ρs
∂t

=
∑
j

(
∂Hs(t)

∂pj
× ∂ρs

∂qj
− ∂Hs(t)

∂qj
× ∂ρs

∂pj

)
+

∑
j

∂

∂pj

(
ρsfj

)
(12)

where the Hamiltonian, as we stress, is time-dependent in character, and its time-average
〈Hs(t)〉 is, by definition, a constant of the motion. The sums in the second term for the j th
particle within the system s extend over the contribution fj of time-dependent forces from
external sources upon j . The canonical variables pj and qj for the j th particle obey the
conditions

ṗj = −∂Hs(t)
∂qj

+ fj and q̇j = ∂Hs(t)

∂pj
. (13)

If one considers the stationary case and sets ∂ρs/∂t = 0 one obtains, after iteration using
Pascal’s method, the solution of the Liouville equation (12) as the density

ρs = constant × exp[−Hs/kT ] (14)

whereHs represents the stationary Hamiltonian. Modifying this to allow for time dependence
in a statistical equilibrium situation, one obtains formally the same solution as (14) but with a
time-dependent Hamiltonian [8]:

ρs = (1/W) exp[−Hs(t)/kT ] (15)

where W is the sum over states. This is in conformity with the customary definition of the
temperature T through the relation

1

T
= d

dE
ln[ρ(E)]. (16)

The basic criterion for statistical equilibrium is taken to be the same as for the random-variable
solution, namely that the average energy of an incompressible system, the members of which
are physically indistinguishable, is effectively a constant of the motion. Energy fluctuations
about the average system energy are inherently random; the temperature of the overall system
(namely, ensemble system plus reservoir) must accordingly also be a constant of the motion, as
otherwise heat diffusion would occur throughout the system. At the local level, the canonical
temperature Ts is thus a constant of the motion, and only fluctuations of the kinetic degrees of
freedom are an issue here. One notes, however, that fluctuations of entropy may nevertheless
take place, since transfer of free energy in the kinetic phase can and does occur.

Since it has also been demonstrated in an earlier analysis [9] for the dynamics of a single
particle that the momentum coordinates in the momentum space of a system obey the Maxwell
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distribution and, further, that such parameters are statistically independent of one another, it
also follows that the kinetic energy fluctuations of the system are random. From the Maxwellian
distribution it can readily be shown that a system energy variance is ∼(n)1/2kT , where n is
the total number of molecules comprising the system, k is Boltzmann’s constant and T is the
reservoir temperature.

The foregoing considerations prompt an examination of the thermodynamic aspects
of the random-variable canonical ensemble, contrasted against the conventional Gibbs
microcanonical approach. This is undertaken in the next section via the detailed analysis
of the (Helmholtz) free energy F and the Gibbs–Helmholtz equation, to arrive at a comparison
of the (Gibbs) entropy SG and the microcanonical entropy Sm, the latter being defined through
the relation

dSm
dE

= 1

T
. (17)

6. Energy, free energy and entropy in the thermodynamics of the classical and
random-variable canonical ensemble

The treatment in this section follows conventional lines, as presented in most basic texts (e.g.
[10]), but relies heavily upon the recent synopsis by Cole [11] and employs generally the same
notation.

The conventional development involving discrete microstates, the sth state having energy
Es and probabilityps (not to be confused with thepj of section 5), proceeds from the canonical
partition function Z, defined through

Z =
∑
s

exp(−βEs) (18)

with the coefficient β (representing an inverse energy, equivalent to within a factor of k to an
inverse temperature) given by the differential

β ≡ 1

T
= d

dE
[ln(ρ(E)] at E = Emax (19)

where ρ(E) is the energy-dependent canonical state density.
The microstate probability is, accordingly,

ps = (1/Z) exp(−βEs) (20)

and the average value of the energy (i.e. the internal energy of the system) is thus

U ≡ 〈E〉 =
∑
s

psEs (21)

namely

U =
∑
s Es exp(−βEs)∑
s exp(−βEs) ≡

∑
s Es exp(−βEs)

Z
. (22)

With this, the (Helmholtz) free energy takes the form

F = −T ln(Z) (23)

and thus the microstate probability (20) can be re-expressed as

ps = exp[β(F − Es)]. (24)
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The sum of the probabilities is unity for all values of β; hence the differential of this sum with
respect to β vanishes. Moreover, one sees that β∂/∂β = −T ∂/∂T and that the free energy F
(at constant β and volume V ) is a constant, whence∑

s

F exp[β(F − Es)] ≡
∑
s

Fps = F . (25)

With this, and with the aid of equation (22), one obtains the Gibbs–Helmholtz equation for a
given system volume V :

U(T ) =
(

1 − ∂

∂ ln T

)
F = F − T ∂F

∂T
. (26)

The partial derivative in the final term ensues from the free-energy definition (23), after some
algebra, as

−∂F
∂T

= ∂

∂T

{
T ln

[∑
s

exp

(
−Es
T

)]}
= −

∑
s

ps ln(ps). (27)

It is this which defines the (Gibbs) entropy:

SG = −∂F/∂T = −
∑
s

ps ln(ps) (28)

or, if the temperature T is given in Kelvin (rather than in energy units as Joule):

SG = −k
∑
s

ps ln(ps) (29)

where k is Boltzmann’s constant. It is evident that this definition of the entropy S is consonant
with the Gibbs–Helmholtz equation written in the usual way:

U = F + T S. (30)

On the other hand, the microcanonical entropy Sm is defined as the natural logarithm of the
microcanonical sum of substates s (the reciprocal of the microcanonical probability). A system
which has only one microstate is deemed to have zero entropy (Sm = 0).

To compare this with the Gibbs entropy, we rewrite the Gibbs–Helmholtz equation (26)
with the definition (28) as

−∂F
∂T

≡ SG = U

T
− F

T
(31)

so that, with (20) and (23), one obtains

SG = βU + ln(Z). (32)

Therefore (in the k = 1 convention),

∂SG

∂U
= β = 1

T
(33)

whereas, from equation (17) one finds

dSm
dE

= 1

T
. (34)

It is thus the average energy U in the canonical ensemble which plays the role of the energy
E in the microcanonical ensemble. This is entirely consistent for large systems in which
the fluctuations away from average values (of energy or probability, wherein the averaging is
carried out over all states of the combined system) can, at least to first order, be neglected. For
further details, see [4, 5].



2920 L E Beghian and E Sheldon

As Nussbaum [12] has pointed out, maximizing S with Lagrange multipliers leads to
the appropriate overall statistical distribution: Maxwell–Boltzmann, Fermi–Dirac or Bose–
Einstein.

In the light of the foregoing demonstration that the random-variable treatment with the
law of large numbers is entirely equivalent in its outcome to the conventional (Gibbs-type)
microcanonical treatment of systems with a large number of (fluctuating) substates, it is
intuitively obvious that the above findings apply just as well in the N → ∞ limit of the
random-variable canonical distribution formalism. We can therefore quite justifiably conclude
that the latter constitutes an equally valid approach to the development of all thermodynamic
results, such as the above, even in the presence of fluctuations.

7. Concluding remarks

With the above-mentioned modifications, one finds a striking similarity between the two
seemingly disparate distributions, inasmuch as:

(a) both are based on an ensemble involving indistiguishable, non-interacting members;
(b) the condition for statistical equilibrium is the same for either case, and has been shown to

be based upon the law of large numbers;
(c) the two distribution laws are similar in form, albeit when the formalism is generalized to

involve a time-dependent Hamiltonian;
(d) in both cases, the presence of random energy fluctuations is accommodated within the

(time-dependent) Hamiltonian;
(e) both approaches lead to the same, consistent outcome in thermodynamics.

Notwithstanding the random energy fluctuations within the system, the temperature of each
member in the ensemble is a constant as thermal equilibrium prevails throughout the system;
there is no net overall change in entropy and no violation of the second law of thermodynamics.

Finally, a brief statement is given below, reiterating the principal assumptions involved in
the development of the random-variable canonical distribution in comparison with the standard
Gibbs approach.

There are two main assumptions made in the present development:

(a) the validity of the law of large numbers; and
(b) the systems comprising the ensemble are taken to be identical in all respects (i.e. ‘clones’

of one another), and the random variables characterizing each system are all subject to the
same distribution.

On the other hand, the Gibbs approach is based on the equilibrium solution of the Liouville
equation. This equation is not founded on statistical arguments but on the conservation of
transport of identical, but independent, members of an ensemble taken in conjunction with the
classical Hamiltonian equations of motion.

Specifically, the statistical approach adopted in this paper has the advantage of avoiding
any difficulties which might be encountered with problems of ergodicity or the validity of
a priori probabilities.

From this work, one observes the remarkable kinship between the modified Liouville
theorem based on the equations of classical mechanics, and the random-variable canonical
distribution based on classical probability theory. Despite their disparate origins and
seemingly distinct approaches, the findings reveal their intrinsic inter-consistency and serve
to demonstrate an inherent relationship between the Gibbs result and the random-variable
approach. Thereby, the large-number condition (N → ∞) manifests statististical mechanics



The random-variable canonical distribution 2921

in its very essence as a formalism that not only bridges but, in a fundamental sense, actually
transcends the oftentimes artificial demarcation between the complementary domains of
classical and quantum physics.
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